First industrial-scale MOF synthesis
Natural gas-powered vehicles may soon be able to travel double the distance on a single tank – due to metal organic frameworks (MOFs). BASF research scientists have developed an innovative method for solvent-free industrial-scale manufacture of those materials for better gas storage.
- (1888PressRelease) October 06, 2010 - MOFs produced by the new method are currently being trialed for natural gas storage in heavy duty vehicles.
# First industrial-scale synthesis of metal-organic frameworks
# New opportunities for gas storage for alternative propulsion systems
With their special structure and large surface area, MOFs open up new opportunities for alternative propulsion systems, in catalysis, as nanoreactors, and in drug delivery, making them hugely interesting both for industry and university research. “This substance class opens up new areas of applications in material science. We are delighted at this significant advance in industrial-scale production, which is a crucial requirement for the commercial use of these fascinating materials,” said Dr. Friedrich Seitz, head of Research Chemicals BASF.
BASF has been working toward industrial-scale synthesis of metal-organic frameworks for the past 10 years. MOFs are highly crystalline structures with nanometer-sized pores that allow them to store hydrogen and other high-energy gases. The larger specific surface area and high porosity on the nanometer scale enable MOFs to hold relatively large amounts of these gases. The pores are adjustable in terms of size and polarity and so can be fine-tuned for specific applications.
Used as storage materials in the natural gas tanks of municipal utility vehicles MOFs offer a docking area for gas molecules, which can be stored in higher densities as a result. The larger gas quantity in the tank increases the vehicle’s range. An advantage of the production method developed by BASF is that it uses no organic solvents. The simple method gives a higher material yield from an aqueous medium and is suitable for existing BASF production plants.
MOFs were discovered toward the end of the 1990s by US chemist Omar M. Yaghi (University of Michigan, Ann Arbor, now UCLA, Los Angeles). BASF researchers contacted him after reading his 1999 article in the science journal Nature and have been collaborating with Professor Yaghi ever since on the synthesis of metal-organic frameworks. The aim is to develop MOFs with the largest possible surface area and storage density. Professor Yaghi recently succeeded in synthesizing MOF-210, a zinc carboxylate with a surface area of more than 10,000 square meters per gram of material. For comparison: the highest surface areas of previous MOFs averaged 5,000 square meters per gram.
About BASF
BASF is the world’s leading chemical company: The Chemical Company. Its portfolio ranges from chemicals, plastics and performance products to agricultural products, fine chemicals as well as oil and gas. As a reliable partner BASF creates chemistry to help its customers in virtually all industries to be more successful. With its high-value products and intelligent solutions, BASF plays an important role in finding answers to global challenges such as climate protection, energy efficiency, nutrition and mobility. BASF posted sales of more than €50 billion in 2009 and had approximately 105,000 employees as of the end of the year. BASF shares are traded on the stock exchanges in Frankfurt (BAS), London (BFA) and Zurich (AN). Further information on BASF is available on the Internet at www.basf.com.
###
space
space